
 [IF=3.427]

 [IF=2.465]

 [IF=1.310]

 [IF=2.465]

 [IF=2.162]

 [IF=1.839]

 [IF=1.823]

 [IF=3.652]
2013

2012

2011

2010

 [IF=0.880]

2009

 [IF=0.633]

 [IF=1.790]

 [IF=3.427]

 [IF=5.210]

 [IF=5.210]

 [IF=1.364]

2008

2007

2006

2005

2004

2003

Before 2003
\[IF=2.348\]

\[IF=2.727\]

\[IF=2.727\]

Book Chapters

\[A\]

Papers in Refereed Conferences

2014

2. T. N. Do*, T. Tjahjowidodo, M. W. S. Lau, **S. J. Phee**, Adaptive Control of Position Compensation for Cable-Conduit Mechanisms Used In Flexible Surgical Robots, the 11th

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

Before 2003
International Patents/Granted and Pending

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Country</th>
<th>Application/Grant No.</th>
<th>Filing/Grant Date</th>
<th>Licensed to Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robotic Endoscope and an Autonomous Pipe Robot for Performing Endoscopic Procedures</td>
<td>USA</td>
<td>U.S. Patent 6,162,171</td>
<td>Dec 2000</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Intuitive Control Device for Motorized Furniture</td>
<td>US PRV</td>
<td>Unknown</td>
<td>May 2003</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>System and Method for Accurate Percutaneous Needle Placement in Soft Tissue Under Ultrasound Guidance</td>
<td>US PRV</td>
<td>Unknown</td>
<td>Apr 2004</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Endoscopic Device for Locomotion through the Gastro-intestinal Tract</td>
<td>USA</td>
<td>U.S. Patent 6,939,291</td>
<td>Sep 2005</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>7</td>
<td>Surgical Robotic System for Flexible Endoscopy</td>
<td>US PRV</td>
<td>61/182,556 2010/138083</td>
<td>29 May 2009</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>8</td>
<td>Weight Management Device</td>
<td>US PRV</td>
<td>61/329,997</td>
<td>30 Apr 2010</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Robotic System for Flexible Endoscopy</td>
<td>PCT</td>
<td>PCT/SG/2010/000200</td>
<td>31 May 2010</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>10</td>
<td>Robotic System for Flexible Endoscopy</td>
<td>Europe</td>
<td>10780898.2</td>
<td>29 Dec 2011</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>11</td>
<td>Robotic System for Flexible Endoscopy</td>
<td>USA</td>
<td>13/322,879</td>
<td>29 Dec 2011</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>12</td>
<td>Robotic System for Flexible Endoscopy</td>
<td>Japan</td>
<td>2012513018</td>
<td>29 Dec 2011</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>13</td>
<td>Robotic System for Flexible Endoscopy</td>
<td>China</td>
<td>2010800299 16.X</td>
<td>29 Dec 2011</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>14</td>
<td>Robotic System for Flexible Endoscopy</td>
<td>Singapore</td>
<td>201108673-3</td>
<td>29 Dec 2011</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>15</td>
<td>Flexible Endoscopy System and Methods Providing a Selectively Shape Lockable Endoscope Probe, a Combined Independently Operable</td>
<td>US PRV</td>
<td>61/703,241</td>
<td>19 Sep 2012</td>
<td>Licensed to EndoMaster</td>
</tr>
<tr>
<td>Primary/Secondary Endoscope Probe Structure, and Quick Connect/Disconnect Interfaces that Link an Actuation Controller and Disposable Actuation Assemblies through which Tendon-Sheath Based Arms are Driven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>